
ON THE PIN-AND-SLOT DEVICE OF THE ANTIKYTHERA 
MECHANISM, WITH A NEW APPLICATION TO THE SUPERIOR 

 PLANETS*

CHRISTIÁN C. CARMAN, Universidad Nacional de Quilmes/CONICET,
ALAN THORNDIKE, University of Puget Sound, and

JAMES EVANS, University of Puget Sound

Perhaps the most striking and surprising feature of the Antikythera mechanism 
uncovered by recent research is the pin-and-slot device for producing the lunar 
inequality.1 This clever device, completely unattested in the ancient astronomical 
literature, produces a back-and-forth oscillation that is superimposed on a steady 
progress in longitude — nonuniform circular motion.2 Remarkably, the resulting 
motion is equivalent in angle (but not in spatial motion in depth) to the standard 
deferent-plus-epicycle lunar theory. Freeth et al. gave a proof of this equivalence, 
which is, however, a very complicated proof.3 One goal of the present paper is to 
offer a simpler proof that would have been well within the methods of the ancient 
astronomers and that, moreover, makes clearer the precise relation of the pin-and-
slot model to the standard epicycle-plus-concentric and eccentric-circle theories.  

On the surviving portions of the Antikythera mechanism, only two devices are used 
to account for inequalities of motion. The first is the pin and slot, used for the lunar 
inequality. And the second is the nonuniform division of the zodiac scale, which, we 
have argued, was used to model the solar inequality.4 The second would obviously 
be of no use in representing planetary inequalities; so a natural question is to ask 
whether the pin-and-slot mechanism could be modified and extended to the planets, 
especially to the superior planets, for which the likely mechanical representations are 
less obvious than they are for the inferior planets. The second goal of this paper, then, 
is to examine the relation of the pin-and-slot model to the standard concentric-plus-
epicycle theory for the retrograde motion of the planets. We shall see that, indeed, 
the pin and slot can be applied to the planets and that this device again gives an exact 
representation of the motion in angle, though not in depth. 

Scholars have pondered the various holes and structures on the main solar gear 
b1, and wondered whether these might represent the remnants of a lost part of the 
mechanism designed for reproducing planetary motion.5 The evidence is frustrat-
ingly sparse. An inscription on the front cover of the mechanism appears to describe 
planetary phenomena, including “stations”, and another inscription on the back cover 
mentions Venus by name,6 but the only hardware surviving is a single wheel of 63 
teeth (r1) which has no function in the published reconstruction of the solar and 
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lunar portions of the mechanism. It is not much to go on. That a planetary display 
could be possible has been shown by Michael Wright, who, in a feat of mechanical 
virtuosity, constructed one that works and that is based on a full representation of 
deferent-and-epicycle theory.7 We ourselves published a more modest proposal, in 
which the mechanism would have offered a display of the key events in the planets’ 
synodic cycles, but not a full-on kinematic display showing the progress of the planets 
around the zodiac with retrograde motion.8 However, in our view, the realization that 
the pin-and-slot mechanism could be applied to the planets (when we know that it 
is in fact used for the Moon) suggests the possibility of a simpler kinematic model. 
We remain agnostic about whether the Antikythera mechanism offered a full-on kin-
ematic display, or a more modest display of information about planetary phases, or 
perhaps a display of the mean motions. However, like Hipparchos, we feel it is worth 
the attention of geometers to investigate the explanation of the same phenomena by 
means of hypotheses that are so different.9

So the third goal of this paper is to present a new approach for the planetary display 
in the Antikythera mechanism. We will follow the idea proposed by Michael Wright 
and others, according to which the Antikythera mechanism displayed planetary 
longitudes on the front dial, using pointers concentric with those of the Moon and 
Sun and sharing the same zodiac scale. But we will use a pin-and-slot mechanism 
to produce the inequality with respect to the Sun (retrograde motion). A remarkably 
simple reconstruction of the planetary display becomes possible, which also fits 
comfortably onto the four-spoke main solar gear. 

The Main Characteristics of the Device for the Lunar Inequality 

The device for producing the lunar inequality consists of four gears called e5, e6, 
k1, and k2, illustrated in Figure 1 (left).10 On the Antikythera mechanism these are 
all of equal tooth number — 50 — but the key requirement is that they be equal by 
pairs: k1 and e5 are equal; and k2 and e6 are equal. The input motion is from an axle 
(actually, a hollow pipe) at E that turns e5 at the rate of the Moon’s mean sidereal 
frequency; following Freeth et al. we designate this frequency ω

si
. Concentric with e5, 

but turning freely from it, is a large wheel e3, which turns at the rate of the Moon’s 
line of apsides. From a modern point of view, the orientation of the Moon’s major 
axis does not stay invariable. Rather, the Moon’s elliptical orbit itself turns in its own 
plane, so that the perigee advances in the same direction as the Moon moves, taking 
about 9 years to go all the way around the zodiac. The ancient astronomers were 
aware that the position of fastest speed in the Moon’s orbit itself advances around 
the zodiac, the Greeks modelling the motion geometrically and the Babylonians by 
means of arithmetical period relations. In the Antikythera mechanism the advance of 
the Moon’s perigee is modelled by letting e3 turn with a frequency ω 

n
 (again using 

the notation of Freeth et al.).
Riding on e3 at centre C

1
 is gear k1, which is driven by e5 and therefore also turns 

with respect to absolute space at frequency ω
si
. Gear k2 turns about an axis, C

2
, also 
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attached to e3 but slightly offset from C
1
. The offset is achieved by using a stepped 

stud, with its larger diameter centred at C
1
 and its smaller diameter centred at C

2
, as 

shown in the right side of Figure 1 and in the inset perspective view. Thus k1 turns 
about C

1
 and k2 turns about C

2.  
Wheel k1 has a small pin, which engages a radial slot 

in k2. Thus k1, turning at a uniform speed, drives k2, producing a quasi-sinusoidal 
oscillation in the speed of k2 — a little faster when the pin is closer to C2 and a 
little slower when farther from C2 — which is superimposed on the mean motion. 
The motion of k2 is transferred to e6, which rotates independently of both e3 and 
e5 about axis E, and communicates the nonuniform motion of the Moon to the other 
parts of the mechanism. Uniform motion in (at e5) is transformed into non-uniform 
motion out (at e6) around the same axis.11 

Simple Proof for the Function of the Lunar Pin-and-Slot Mechanism

We shall now offer a simple demonstration of the efficacy of this device, and will 
also make clear its relation to the ordinary tools of Greek theoretical astronomy, 
namely epicycles and eccentrics. Let us for the moment imagine that the Moon’s 
line of apsides does not revolve, but remains in the same spatial orientation. We 

Fig. 1. The device for producing the inequality in the Moon’s motion around the zodiac, as reconstructed 
in ref. 1. The edge-on view (at right) shows how the stepped stud achieves different axes of rota-
tion for k1 and k2.
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shall construct a representation of the standard Hipparchian epicyclic lunar theory, 
and superimpose on it a diagram of the pin-and-slot device from the Antikythera 
mechanism.  

Consider first the epicycle theory. Refer to Figure 2. Circle k1 now represents the 
Moon’s deferent circle, with centre at the Earth C

1
. The epicycle’s centre D is carried 

around clockwise (eastward) at the rate of the Moon’s mean motion. Thus angle θ 
increases uniformly with time. Simultaneously, the Moon M moves counterclockwise 
on its epicycle, but at exactly the same rate, so angle α remains equal to θ. Angle 
α, the Moon’s epicyclic anomaly, increases uniformly at the angular frequency ω

a
.
 

The direction of the Moon as seen from the Earth is line C
1
M. Thus, at the moment 

shown in the diagram, the angular position of the Moon beyond its point of fastest 
motion is θ + q (where q is called the lunar equation).

Now suppose that Figure 2 represents the model realized in the Antikythera 
mechanism. In Figure 2, we are in the frame of reference of wheel e3. Alternatively, 
one can think of the motion of the line of apsides as being suppressed for the time 
being. Wheel k1 turns uniformly about centre C

1
; mounted on k1 is a pin at D. (We 

may think of k1 as being somewhat larger than shown, so that the pin need not be 
exactly at the perimeter of the wheel.) Wheel k2 rotates about a distinct centre C

2
 

(slightly off-centre from C
1
). k2 has a slot (represented by the heavy dashed line), 

which points in the direction of C
2
. 

Imagine that k1 was originally oriented so that pin D lay in the direction of fastest 
motion (in the direction of line C

1
C

2
). But k1 has now turned far enough that D lies 

at angle θ as viewed from C
1
. D will be seen from C

2
 at a different and larger angle 

φ. The question is: just what is the size of this angle φ? Because of the equality of θ 
and α, it follows that DM remains parallel to C

2
C

1
. Then, if we chose the eccentric-

ity C
1
C

2
 in the pin-and-slot mechanism to be equal to the radius DM in the epicycle 

theory, C
2
DMC

1
 must form a changing parallelogram with φ always equal to θ + q. 

Thus, the motion in angle in the pin and slot mechanism agrees precisely with the 
motion in angle of the epicycle theory. That is, a point, such as Z, on the rim of k2 
moves about C

2
 in a perfect circle, but at variable angular speed. The angular posi-

tion of Z observed from C
2
 is the same as the angular position of M as seen from C

1
. 

Now, we may also allow wheel e3 to move, carrying line C
1
C

2
 around with it, and 

the demonstration remains intact. Moreover, the rotating ensemble now models the 
lunar inequality in detail, with its rotating line of apsides. 

Relation to the Eccentric-Circle Theory

As is well known (and was equally well known in Antiquity) the epicycle-plus-
concentric model is geometrically equivalent to an eccentric-circle theory. See 
Figure 3. Since DM remains parallel to C

2
C

1
, it follows that the physical motion of 

M through space, resulting from the dual motion of D around the deferent k1 and 
of M around the epicycle, is uniform motion on a perfect circle, shown in dashed 
line, which is centred at C

3
, one epicycle radius below C

1
. In the typical proof of the 
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equivalence of eccentric and epicycle, one focuses on parallelogram C
1
C

3
MD. (But 

it is parallelogram C
2
C

1
MD that embodies the quasi-equivalence of the pin-and-slot 

mechanism to the epicycle theory.)
Suppose C

1
 represents the Earth. Then, as the ancient astronomers knew, there 

were two equivalent theories: the epicycle-plus-concentric (epicycle DM plus circle 
k1) and the eccentric-circle theory (circle k3 with no epicycle). The proof of this 
equivalence was given by Ptolemy in the Almagest, and earlier by Theon of Smyrna, 
who cited Adrastos as his authority. Traditionally, based on some remarks of Ptolemy, 
the proof of the equivalence of these two theories is ascribed to Apollonios of Perge. 
But no one really knows when it was first proven.12  

As far as is known to us, there is no extant ancient mention of the quasi-equivalence 
of the pin-and-slot mechanism to the epicycle theory. This is a quasi-equivalence 
because the pin and slot model produces the same motion in angle, but not the 
same physical motion in space as the epicycle model. The output of the pin and slot 

Fig. 2. Pin-and-slot mechanism for the lunar inequality in the Antikythera mechanism, compared with the 
epicycle-plus-concentric theory in the standard astronomy of Hipparchos or Ptolemy.



6 Christián C. Carman, Alan Thorndike and James Evans

model is a point moving at non-uniform speed on a circle k2. But the output of the 
epicycle-plus-concentric model (or of the eccentric-circle model) is a point moving 
uniformly around circle k3.

One must suppose that an ancient Greek astronomer trained in the philosophical-
geometrical tradition of Hipparchos and Ptolemy would not have regarded the 
pin-and-slot mechanism as a “realistic” representation of the lunar theory, for the 
pin-and-slot mechanism suppresses the motion “in depth”, but nevertheless gives an 
account of the motion in longitude that agrees with what the epicycle theory would 
prescribe. Aristotle, too, would have considered it not an appropriate solution, as he 
insists that each simple body (e.g., a celestial orb) should be animated by a single 
simple motion. And here, the final output motion is the rotation of e6, which consists 
in a steady rotation with a superimposed oscillation.

Did the ancient mechanic who designed the Antikythera mechanism realize the 
equivalence in angle of the pin and slot mechanism to the epicycle theory? If so, how 
is it that no proof of the equivalence survives? Or was this mechanism considered a 

Fig. 3. Three models compared: pin-and-slot (wheels k1 and k2), epicycle-plus-concentric (epicycle DM 
and circle k1), and eccentric circle (circle k3).
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rough-and-ready approximation to epicycle motion — good for giving the final output 
angle, but not necessarily considered exact? In a way, the striking contrast between 
applied mechanics and accepted celestial physics should not surprise us. There is a 
well-documented example of a similar contrast. Greek astronomers grounded in the 
philosophical-geometrical tradition (for example, Theon of Smyrna, early second 
century a.d.) wrote treatises on deferent and epicycle theory while their contempo-
raries were busy mastering and adapting the non-geometrical planetary theory of 
the Babylonians.13 The philosophically-based astronomy of the high road explicitly 
endorsed uniform circular motion as the only motion proper to celestial bodies while 
the numerically-minded astronomers (who needed quick and reasonably reliable 
results for the purposes of astrology) made free and easy with nonuniformity of 
motion. In a similar way, it is possible that mechanical tricks of the trade such as the 
pin-and-slot mechanism were used in a craft tradition of model-building, quite apart 
from the practices of the “serious” (i.e., geometrically-minded) astronomers. In the 
medieval tradition of equatoria, one also finds  representations of planetary theory 
that are not “realistic”.14 On the other hand, Figures 2 and 3 show that a proof of 
the equivalence in angle would have been well within the reaches of contemporary 
Greek geometry.

Choice of Active and Passive Elements

An interesting feature of the pin-and-slot geometry is that the equation of centre 
function changes its form if the roles of the pin and slot are reversed. See Figure 4 
(left), which shows the pin and slot as found on the mechanism. k1 turns about C

1
 with 

the uniform, mean motion. It is easy to show that the equation q of centre is given by

where e = b/r. Here b = C
1
C

2  
is the distance between the axes and r = C

1
D is the fixed 

distance of the pin from the centre C
1
 of wheel k1. This is the ordinary expression 

for the equation of centre in standard Ptolemaic solar theory.
But if (right side of Figure 4) the pin is instead placed in k2, and the slot is cut 

into k1 and directed toward C
1
, then we find instead 

sin q = e sin θ,

where again e = b/r, but now r is the fixed distance of the pin from C
2
. The more 

complex expression has become a simple sinusoidal oscillation.15 So we are again left 
to wonder: did the mechanic have a deep understanding of the equivalence theorem, 
or is it just chance that the pin is placed in k1 rather than in k2? Perhaps, as k1 drives 
k2, he would have thought of the pin as the active element and therefore chosen to 
place it on k1, the active wheel. 
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Transfer of the Lunar Pin-and-Slot Mechanism to the Case of the Outer Planets

In their discussion of the lunar pin-and-slot mechanism, Freeth et al. say:

As discussed above, in absolute terms, e5 rotates at the rate of ω
si 

and e3 rotates 
at the rate of ω

n
. So, relative to e3, e5 rotates at the rate of ω

si
 – ω

n
  =  ω

a
. Since 

e5 and k1 both have 50 teeth, relative to e3, k1 rotates at the rate of ω
a
. This is 

the critical factor that ensures that the anomaly introduced by the pin-and-slot 
mechanism has the period of the anomalistic month, as required by Hipparchos’ 
lunar theory.16 

Now, we want to transfer the basic idea of the lunar inequality to the planets. The 
lunar inequality is an inequality with respect to the zodiac — or, if we want to be 
more exact and  take into account the fact that the line of apsides slowly advances, 
an inequality with respect to wheel e3. This is why the wheels that produce the 
inequality (k1 and k2) must ride on wheel e3. But retrograde motion is an inequality 
with respect to the Sun.17 So, in order to represent an epicycle and deferent model 
of the planets we need:

(a) a gear rotating with the sidereal period, i.e., the period of the mean longitude (in 
the Moon model, e5).

(b) a “big” carrier gear rotating at ω
n
 = ω

si
 – ω

a
, i.e., at the difference between the 

rates of mean longitude and of the epicyclic anomaly. In the case of the Moon, the 
epicyclic anomaly increases in the opposite direction to the sidereal motion, so, in 
the case of a planet, where both the epicycle and the deferent rotate in the same direc-
tion, the “big” gear should rotate at ω

si
 + ω

a
. (It is not clear that the outset whether 

Fig.  4. The effect of reversing the roles of the pin and slot.
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the difference in the directions of motion on the epicycle will cause problems or not. 
We shall see that all will be well.)

(c) the set of other gears, with the correct eccentricity, for the pin and slot.

Now, for an outer planet, the sum of the planet’s sidereal frequency and its anoma-
listic frequency is equal to the frequency of the Sun’s mean motion:  ω

si
 + ω

a
 = ω

¤
. 

(This familiar result follows from the construction in Figure 5.18) This means that, 
for all the outer planets, the “big” gear (corresponding to e3 in the lunar mechanism) 
should rotate at the same period, and the period is that of the mean motion of the 
Sun. Fortunately, we do have a big gear rotating at this period, the solar gear, b1. 
And, fortunately also, this gear is rotating about the correct axis, i.e., the axis of the 
pointers. Therefore, we need only place on each of three spokes of b1 the pin-and-
slot mechanism of a superior planet. This coincidence seems to increase significantly 
the plausibility of this proposal for, besides the theoretical reason (to have the same 
style of mechanism for the planets and the Moon), we have an empirical reason, i.e., 
we actually have a big gear rotating at the rate we need. 

So, for each outer planet, we only need to have a gear, concentric with b1, rotating 
with the sidereal frequency ω

si
 for this planet. Then, the addition of a pin-and-slot 

mechanism rotating at frequency ω
¤

 (so, riding on b1), with the correct eccentricity, 
would produce the apparent motion in angle of the planet.

Pin-and-Slot Compared to Apollonios’s Planetary Epicycle

In the preceding section we gave a plausibility argument that the pin-and-slot mecha-
nism can effectively mimic planetary motion. We shall show now that a pin-and-slot 
mechanism will account in detail for the motion in angle of the planet. Consider the 
motion in longitude of a superior planet according to standard epicycle theory, as shown 
in Figure 5. C

1 
is the Earth.

 
Imagine that at one moment the centre D of the epicycle 

and the planet P both lay on the vertical straight line in the direction of fastest motion. 
But at the moment represented in the figure, a certain amount of time t has elapsed, 
and the planet’s mean longitude has increased by θ = ω

si
 t. The epicyclic anomaly has 

increased by α = ω
a
t. The longitude of the Sun has increased by  = ω

 
t. Because of 

the standard constraint linking the motion of the Sun and the superior planet we have 
 = θ + α, and ω

¤  
= ω

si 
+ ω

a.
 At this moment, the direction from the Earth to the 

planet is in the line C
1
P. The planet’s angular distance from the direction of fastest 

motion is θ + q, where q is the equation of the epicycle. θ increases steadily with 
time, while q undergoes an oscillation.

Now let us consider matters as seen in the frame of reference of the revolving 
solar gear b1. Here the situation is shown in Figure 6. The line from C

1
 to the Sun 

points in a fixed direction (vertical in the figure). Thus, we have rotated Figure 6 
counterclockwise by the angle  (compared with Figure 5). The angular position 
of the planet with respect to the vertical reference line (i.e., the elongation of the 
planet from the Sun) is 
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η = θ + q – .

Note that η increases to the left as time goes by. That is, in the frame of gear b1, D 
moves counterclockwise. This is simply because ω

si
 < ω

¤
. Note that Figure 6 is a 

sort of mirror image of Figure 2. In Figure 2, we had D moving clockwise around the 
deferent, while M went counterclockwise on the epicycle. Here, with the planetary 
theory, as viewed in the frame of reference of b1, we have just the opposite: D moves 
counterclockwise, while P moves clockwise on the epicycle. Thus, in spite of the fact 
the planets move in the opposite direction on their epicycles than does the Moon, the 
conditions necessary for the theorem do apply.

Because the direction DP of the planet in the epicycle remains parallel to the direc-
tion from the Earth to the Sun, we have DP always parallel to C

2
C

1
. If we choose a 

circle k2, with centre C
2
 located below C

1
 by a distance equal to DP, it follows that 

the quadrilateral C
1
PDC

2
 is a changing parallelogram; thus C

2
D is always parallel to 

C
1
P. Now suppose that D represents a pin in a wheel k1, driving wheel k2 by means 

of a radial slot. (In Figure 6, the slot is suggested by the heavy dashed line, and one 
should imagine k2 as larger.) Then a fixed point Z on k2 in the direction of C

2
D will 

move so that C
2
Z is always parallel to the direction C

1
P. Again, this is an equivalence 

in angle only. To get back into the frame of the fixed stars, we just rotate Figure 6 

Fig. 5. Epicycle theory for the motion of a superior planet. The rotating line from the epicycle’s centre D 
to the planet P must stay parallel to the rotating line from the Earth C

1
 to the Sun. So θ + α = .
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clockwise by angle ; but the parallelness of C
2
D and C

1
P will not be disturbed.

This works because of a remarkable circumstance. In the case of the lunar theory, 
the theorem will only hold if the Moon moves backwards on the epicycle. (A theory 
with both D and M moving clockwise, even if M completes its motion on the epicycle 
in one anomalistic period, will not satisfy the conditions of Figure 2. In this case, a 
pin and slot might still give a reasonable approximation to the epicycle theory, but 
it would not be an exact angular match.) 

In the case of the planets, the direction of P on the epicycle is clockwise — in the 
same direction as D. So it might be thought that the theorem could not possibly apply. 
But the situation is saved by the fact that the angular frequency of the Sun is greater 
than that of the superior planets. So, when we rotate Figure 5 counterclockwise, to 
get into the frame of reference of the solar wheel, we end up with Figure 6 — the 
planet moving clockwise on the epicycle, but the epicycle moving counterclockwise 
on the deferent.  The opposite directions rescue the theorem.

A date for the design of the Antikythera mechanism can be placed between the 
late third century b.c. and the early first century b.c. It seems a very open question 

Fig. 6. The epicyclic theory of a superior planet (viewed in the frame of reference of the Sun wheel), 
superimposed on a pin-and-slot mechanism.
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whether the mechanic understood the deep theoretical complexities of the pin-and-
slot mechanism; if he did, we might reasonably suspect that the mechanism comes 
from rather later in the possible range, after a thorough understanding of planetary 
theories had been arrived at. But if the mechanic used the pin and slot as a sort of 
ad-hoc way of imposing an oscillation on a steady forward motion, he need not have 
been aware of the existence of an equivalence proof. In this case, he was perhaps 
“lucky” — though his mechanical instincts were still remarkable. 

The Antikythera mechanism contributes significant new evidence for the debate 
over realism and instrumentalism in ancient planetary theory. To put it crudely, the 
mechanic was a happy instrumentalist. The lunar pin-and-slot mechanism represents 
the motion of the Moon satisfactorily in angle, but renounces a description of the 
motion in space. The planetary pin-and-slot mechanism (if it existed!) represents 
another such goal-oriented bit of modelling. And of course, the use of a non-uniformly 
divided zodiac to model the solar anomaly fits right into this pattern. There is an irony 
here, in that Ptolemy, when he gives directions for obtaining the longitude of a planet 
from his theories, essentially gives a procedure for eliminating any consideration of 
the depth in space. And he was hardly an instrumentalist. But the final output of a 
realistic theory may look like the output of an instrumentalist’s black box.

Obtaining the Mean Sidereal Motion of an Outer Planet

We have a working pin and slot that effectively model the motion in angle in Apol-
lonian planetary theory. The next requirement for a display of the zodiacal motion of 
a superior planet is a gear turning about the b axis at the rate of the planet’s sidereal 
frequency ω

si
. One simple way to achieve the sidereal rotation is to use a stationary 

gear, concentric with the b axis, fixed to a plate behind the dial plate. Refer to Figure 
7A. Gear u with u teeth is fastened to the back of the plate. Gears x and y are carried 
on an axle that rides around on b1 in a period equal to the year. x and y are rigidly 
fixed to one another (as suggested by the dark line with diamonds that connects them 
in the figure). Finally, y engages with a gear z that is concentric with the b axis, but 
is free to turn independently. The frequency of gear b1 with respect to fixed space is 
ω
¤

 = 1 revolution/year. b1 rotates clockwise as viewed from above the plate in the 
diagram, and ω

¤
  is considered positive. Presently, we shall work out the frequency 

ω
z
 of gear z with respect to absolute space and show that it can be made equal to ω

si
.

An alternative way to achieve the same result, shown in Figure 7B, is to make use 
of the stationary squared-off boss, visible in the centre of Figure 8. It is possible that 
this boss was fixed with respect to the plate behind b1, and its squared-off portion 
may have served as a gear seat.19 Figures 7A and 7B are entirely equivalent in terms 
of generating the output frequency ω

z
. In each case we are working with a stationary 

gear u and the rotating solar gear b1 that turns with a period of a year. The arrange-
ment of 7B inverts the vertical space order of gears x and y.

Let us now work out the rates of rotation. Refer to Figure 9. (Figure 9 and the 
argument that follows apply equally well to the models of Figure 7A and Figure 7B: 



13On the Pin-and-Slot Device of the Antikythera Mechanism

it does not matter whether u and x are above or below y and z.) The top part of Figure 
9 shows the positions of wheels u and x before (left) and after (right) a rotation of the 
main Sun wheel b1 has taken place. Before the motion begins, point p on wheel x is 
oriented as shown. The main solar wheel, carrying the axle of x, rotates clockwise 
through θ; the situation is now as in the upper right. Point p has been carried to a new 
position. The number n of teeth that have been engaged on u is given by 

n = u(θ/360).

The same number of teeth must have been engaged on wheel x, so it follows that

φ = 360(n/x)
      = θu/x. (1)

The angle in absolute space through which wheel x has rotated is θ + φ = θ(1 + u/x).
Now the lower part of Figure 9 examines the fates of wheels y and z. Before the 

rotation (left) the initial position of point q on wheel z is shown. After the rotation 
(right side of figure), z will have rotated through an angle ψ in absolute space, so q 
will be in a new position. Depending on the tooth numbers u, x, y, z, it can be the case 
that q has rotated either clockwise or counterclockwise. We want q to have moved 
clockwise, corresponding to the sidereal motion of the planet, so in the diagram we 
have placed q below the horizontal. Because x and y are rigidly fastened together, 
the angles marked φ in the upper right and lower right are the same. The number m 

Fig. 7A. One way to get wheel z rotating at the mean sidereal frequency of a superior planet. The example 
is for Mars, with u, x, y, z = 37, 79, 58 and 58 teeth. 

Fig. 7B. A second way to get wheel z rotating at the mean sidereal frequency of a superior planet, using 
a stationary boss. 
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of teeth on wheel y that have been engaged is given by 

m = yφ/360
    = (θ/360)(uy/x).

The total space rotation of wheel z is ψ (assumed clockwise). The number of teeth 
engaged on z is z(θ – ψ)/360, and this must be equal to m. So we obtain

ψ = θ(1 – uy/xz).

Thus, since θ turns at the frequency ω
¤

  of the main solar gear,

      ω
z
 =  ω

¤
 (1 – uy/xz).   (2)

If the tooth numbers are chosen appropriately, ω 
z
 can be made equal to ω 

si 
.

Fig. 8. Composite x-ray of the main solar gear b1. Copyright of the Antikythera Mechanism Research 
Project.
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Here is an alternative, and shorter, argument. Let u and z rotate independently 
about a common axis, and let x and y rotate at the same rate as one another about 
their common axis. Suppose x and y rotate clockwise by an angle φ. Then x drives 
u in counterclockwise rotation by an angle – uφ /x = – θ say. Similarly y drives z in 
counterclockwise rotation by an angle – yφ/z = – Ω say. To get to a final configura-
tion where u has remained fixed, we rotate the entire assembly as a rigid body by 
an angle θ. This returns u to its initial orientation. The final orientation of z is – Ω 
+ θ, which is ψ = – yφ/z + uφ/x. Since φ = xθ/u, we get ψ = (1 – uy/xz)θ, as before. 

Note that ω
z
 can be of either sign, depending on the tooth numbers. We want ω

z
 

positive, i.e., with z revolving in the same direction as the Sun, and equal to ω
si
, the 

sidereal frequency of the superior planet. So we obtain

uy/xz = 1 – ω 
si
/ ω

¤
,

or, since for a superior planet ω
si 

+
 
ω

a
 = ω

¤
,

        uy/xz = ω
a
/ω
¤

.   (3)

An appropriate choice of gears can be determined from the relation between the year 
and the anomalistic period of the planet, which can be drawn from a Babylonian 
period relation. It is easiest to work with the Babylonian goal-year periods (rather 
than the ACT periods), as they involve generally small integers.20 For example, one 
period relation attested for Mars is 

79 years = 42 sidereal periods = 37 anomalistic (or synodic) periods [Mars].

Fig. 9. Obtaining the mean sidereal motion of an outer planet from the mean motion of the Sun.
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So, to have gear z turn at the sidereal frequency of Mars, we need (u/x) × (y/z) = 37/79. 
A gear scheme that will work nicely is shown in Figure 7A or 7B. For here we have

(u/x)(y/z) = (37/79) × (58/58) = 37/79,

as required, while we also have u + x = y + z = 116, which means the gears will mesh 
as required. Here, for simplicity, we have taken all the gears in the four-gear train to 
be of the same module. But wheels y and z could be of any convenient tooth number, 
or of any convenient module, as long as they have the same tooth count and module 
as one another. As we shall see, we will need this flexibility later on.

Similarly, using the Babylonian goal-year periods for Jupiter and Saturn,

71 years = 6 sidereal periods = 65 anomalistic periods [Jupiter]
59 years = 2 sidereal periods = 57 anomalistic periods [Saturn],

we can construct the solutions

for Jupiter:  u, x, y, z =  65, 71, 68, 68, so (u/x)(y/z) = 65/71, 
where u + x = 136 and y + z = 136;

and for Saturn: u, x, y, z = 57, 59, 58, 58, so (u/x)(y/z) = 57/59,  
where u + x = 116 and y + z = 116.

We now have all the elements we need to construct a workable solution for the superior 
planets: the big carrier gear b1, turning at the rate of the Sun; a demonstration that 
the point-and-slot mechanism can mimic the Apollonian theory in angle; and three 
gears turning at the sidereal rates of Mars, Jupiter, and Saturn.

Putting It All Together

Figure 10 shows an obvious concatenation of the results above: we append the pin-
and-slot construction to the output of the mean sidereal motion of Mars. Gears u, x, 
y, and z result in z rotating with respect to absolute space at ω

si
, as shown above. (The 

black diamonds on the axis remind us that gears x and y are fused together.) Then 
gears z, a, b, and c, with the pin-and-slot mechanism linking a and b, produce the 
modulated motion, with synodic oscillation superimposed. The Mars axis, connected 
to c, has the correct mean motion around the zodiac, and an anomalistic motion of the 
correct period. A Mars pointer could be connected to this axis. It is noteworthy that 
all the gear axes are either concentric with the main solar axis, or else ride around 
on the main solar gear. The size of the retrogradations may be adjusted by making 
use of the parameters of the pin and slot: the key ratio is the eccentricity of wheel 
b to the distance of the pin from the centre of wheel a. This solution requires seven 
gears. Similar solutions can be formed for Jupiter and Saturn.  

Glancing at the reconstruction in Figure 10, one might be struck by its wasteful-
ness:  look at all those 58-tooth wheels. And note how the four-gear train made by 
the mechanism for the sidereal motion seems to be echoed by the four-gear train for 
the anomaly. Wouldn’t it be possible to do the whole thing (mean sidereal motion 
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plus anomaly), using only four gears? In Figure 10, we see that y is driving z, and 
that a is concentric with y and is driven by z. Thus y and a rotate at the same rate 
(they are both meshed with the same gear and are on the same axis). So y and a can 
be fused into one, as in Figure 11. But, now we can take another step and eliminate 
z in Figure 11, for y/a is moved directly by x, and z is therefore useless. But then 
the tooth count of y/a becomes irrelevant, and y/a may be considered simply to be a 
part of x. Thus we arrive at Figure 12A, where the z of Figure 12A is the c of Figure 
11, and the y of Figure 12A is the b of Figure 11. (An alternative, but equivalent, 
solution is shown in Figure 12B, in which the stationary gear is mounted to the boss 
below b1 instead of to the plate above it.) 

We offer now an analytical demonstration, showing that the four-gear solutions of 
Figure 12A or Figure 12B indeed have all the right properties — the right sidereal 
period and the right anomalistic period. Equation 2 requires

ω
si
 = ω

¤
(1 – uy/xz).

Thus the sidereal period will be fine as long as we do not disturb the ratio (uy)/(xz). 
Now, Equation 3 requires 

ω
a
 = ω

¤ 
(uy/xz).

But, in the right sides of Figure 9, we need φ to be equal to α, the increase in epicyclic 
anomaly. This is because φ indicates how far point p has moved around the anoma-
listic cycle, carrying the pin that is a part of the pin-and-slot mechanism. Imposing 
this condition on Equation 1 requires 

ω
a
 = ω

¤ 
(u/x). 

Comparing the last two equations, we see that we must have y = z, which is in fact 
the way we have drawn Figure 12A (and 12B). With this choice, the four-gear solu-
tion of Figure 12A (or 12B) builds in not only the correct sidereal motion, but also 
a pin-and-slot device producing the right anomalistic motion. 

Fig. 10. Complete solution for Mars, embodying the correct sidereal period and the correct anomalistic 
period. Seven gears in all are used.
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A Proposal

In Figure 8, the holes at A and B and the lug at C are placed more or less at equal 
distances from the centre of the wheel. The x-ray shown is a composite: one x-ray 
slice shows most of the surface of the wheel, including holes A and B; but a portion 
of a second x-ray slice taken several millimetres higher has been added to show the 
lug. This lug stands about 6 mm high. We imagine that apparatus was dropped over 
it and secured to it. Perhaps another lug was originally fastened at A.21 

Fig. 11. A step on the way to a simpler solution. 

Fig. 12A. Four-gear solution equivalent to Fig. 10. Stationary gear mounted to a plate nearer the front 
of mechanism.

Fig. 12B. Alternative four-gear solution, with stationary gear mounted on a boss fixed to the plate behind b1.
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The construction described above, using pin-and-slot mechanisms for the outer 
planets, lends itself well to this geometry. See Figure 13. The solutions for each of 
the superior planets may be mounted on b1, taking advantage of what appear to be 
mounting holes on two of the spokes, and the lug on another spoke, using gear mod-
ules (millimetres of gear diameter per tooth) that are all in the vicinity of the gear 
modules typical of the Antikythera mechanism (on the order of 0.5 mm per tooth). 
The lug perhaps served to raise the gears vertically. Indeed, it would be necessary 
for the y and z gears of the three planets to be placed at different heights. In Figure 
13, the nomenclature “xj 71” means “gear x for Jupiter with 71 teeth”. The gears u, 
x, y and z for each planet are named as in Figure 12A. For each planet, a stepped 
stud is fastened to wheel b1. The wheel carrying the pin rotates about centre C

1
 and 

the wheel with the slot rotates about centre C
2
. The centre of the larger-diameter 

part of the stud is marked + and the smaller-diameter part of the stud is indicated ⊕.
The simplification that we can simultaneously require u + x = y + z and maintain 

a constant gear module throughout the four-gear train, which was fine for the case 
of a zero-eccentricity diagram such as Figure 6, cannot be maintained once eccen-
tricity is introduced. The construction of Figure 13 is based on always putting the 
gear modules near to 0.5 mm of diameter per tooth (where the diameter is the pitch 
diameter), in the range typical of the Antikythera mechanism. But the module for 
a given planet’s y and z is not always exactly the same as the module for u and x. 

Mars provides a minor extra challenge because of the large eccentricity C
1
C

2 

(corresponding to a large epicycle in the Apollonian theory). The slot in wheel y is 
directed toward C

2
; but because b/r > 0.5, the slot would need to be so long that it 

would overlap the part of the stud that serves as the C
2
 axis, if we use the arrange-

ment shown in Figure 12A. There are any number of ways to deal with this. An easy 
solution is simply to reverse the direction of the stepped stud shown in Figure 12A, 
so that the small end of the stud goes into b1. A metal strap would go over the back 
of the gears and securely hold the wide end of the stud above wheel x. (It should 
be noted that ‘above’ and ‘below’ are terms that apply only to the diagrams: in the 
normal operation of the Antikythera mechanism, all the axles shown in Figure 12A 
would be horizontal.) A strap might be in any case a requirement for stability of 
the gear trains; and such a strap was a part of the extant lunar anomaly mechanism. 
This is the arrangement on which Figure 13 is based. An alternative choice would 
be a different arrangement of the gears, so that wheel x could be closer to b1 than 
is wheel y; this would make the C

2
 part of the stud narrower than the C

1
 part of the 

stud (as in Figure 12B). 
None of the details of Figure 13 should be given much weight — there is simply 

too little material evidence and there would be many different ways of mounting the 
gears. We intend the figure only as an illustration of the principle that a pin-and-slot 
solution for the superior planets is workable.  
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Calibration Issues for the Superior Planets

In Apollonian planetary theory (Figure 5), let R
e
 denote the radius of the epicycle 

and R
d
 the radius of the deferent circle. In the corresponding pin-and-slot represen-

tation (Figure 6), let r (= C
1
D)

 
represent the distance of the pin from C

1
; and let b 

(= C
1
C

2
) represent the off-centredness of circle k2 with respect to circle k1.Then 

the pin-and-slot mechanism will give behaviour corresponding to the deferent-and-
epicycle theory if  

b/r = R
e
/R

d
.

One might worry that the fact that gears y and z in Figure 12A have different  numbers 

Fig. 13. A possible kinematic solution for the superior planets, based on the pin-and-slot construction, 
superimposed on the main solar wheel b1. Underlying x-ray copyright of the Antikythera Mecha-
nism Research Project.
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of teeth than gear x might require some sort of adjustment to this relationship. But 
no adjustment is required. In Figure 12A, the angular oscillation (with respect to 
the mean motion) of gear y is determined by the ratio b/r, and the tooth count of y 
doesn’t enter into it. But then the angular oscillation of z will be the same as that of 
y, since z and y do have the same number of teeth.  

In Figure 13, we have for the sake of simplicity shown the C
1
-C

2
 lines for Jupiter 

and Saturn as parallel to one another. This might facilitate setting initial conditions, 
but it is not a necessary mechanical arrangement, which we emphasize by setting 
the C

1
-C

2
 direction for Mars at right angles to those for the other planets. The C

1
-C

2
 

directions can be chosen at will, and separately for each planet. Suppose that the 
actual planet is in the middle of retrograde motion. Then we want to set the gears for 
its pin-and-slot mechanism so that the pin is closest to C

2
. This guarantees that the 

phasing of the pin-and-slot mechanism matches the retrograde cycle of the actual 
planet. Then, the pointer that indicates the planet’s longitude should be set so that it 
points diametrically opposite the Sun. 

Inferior Planets

The fourth spoke is free for the inferior planets, which can be accommodated in a 
more ordinary way, using a simple epicycle construction, as shown in Figure 14. A 
construction resembling Figure 14 was described by Edmunds and Morgan.22 And 
Wright used a similar construction for the inner planets, with, however, compound 
gear trains rather than simple gear pairs.23 As the sidereal frequency of both Mercury 
and Venus is exactly

 
ω
¤ 

, both planets’ apparatus may be mounted directly on the 
fourth spoke of b1. If the fixed wheel has u teeth and the epicycle wheel has x, then 
the anomalistic frequency is given by ω

a
 = ω

¤ 
(u/x). If R

e
 and R

d 
represent the radii 

of the epicycle and of the deferent in standard theory, we should then require DP/
CD = R

e
/R

d
. 

Trial by Fire

We actually built a Mars model in metal, based on the construction of Figure 12A 
and Figure 13, using the pin-and-slot mechanism to model the inequality. We can 
confirm that it works smoothly, even for a planet with such a large Apollonian epicycle. 
One point that modellers should be aware of is that the roles of the pin and the slot 
cannot be reversed. For Mars, having the slot lead the pin (as in Figure 4, right) would 
result in a model in which retrograde motion does not actually occur. This results from 
the two different mathematical forms for the equation q in these two cases, combined 
with the fact that for Mars ω

si
 is slightly larger than ω

a
. For a planet such as Saturn, 

for which ω
a
 >> ω

si
  and the epicycle is small, one could reverse the roles of the pin 

and slot without dire consequences; the pin and slot would no longer perfectly mimic 
the epicycle model  in angle, but the results would still be tolerably good. 

With the correct version of the model (i.e., with the pin leading the slot), the 
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pin-and-slot mechanism matches the Apollonian theory in angle. But Apollonian 
planetary theory itself gives but a poor approximation to the actual motion of Mars.24 
The combination of large epicycle and a large eccentricity required something more 
complex than the simple theory of Apollonios for Greek planetary theory to yield a 
satisfactory representation of the motion of Mars.

Concluding Remarks

Unless new material is discovered, it is conceivable that we will never know for sure 
just how the planets were represented on the Antikythera mechanism. But the solution 
for the superior planets described here has great attraction. It uses for these planets’ 
inequality with respect to the Sun precisely the mechanism that we know was used for 
producing the lunar inequality with respect to the zodiac. And, as we have shown, this 
solution is an exact representation in angle of Apollonian epicycle theory. Moreover, 
this solution requires but four gears for each of the superior planets, it explains why 
gear b1 needed to be large, and it can be fitted well to the construction holes that 
remain on b1. Of course, one could object that a complete model would require many 
concentric axles — and so one’s receptiveness to the proposal may in part depend on 
what sort of mechanical engineering one considers likely around the second century 
b.c.25 The chief disadvantage of the present proposal is that it offers no explanation 
of the tooth count of b1. It also does not explain the need for the large crossed-out 

Fig. 14. A possible epicyclic construction for an inner planet. 
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regions of b1; perhaps these were only access ports. Or perhaps they were connected 
with a display of the four seasons, as we have suggested elsewhere.26 In any case, we 
hope that this paper has offered some insights into the richness of the pin-and-slot 
mechanism and that it will serve to focus new attention on the issues raised by the 
intersection of ancient Greek theoretical astronomy and ancient Greek mechanics. 
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